The generator matrix
1 0 0 0 1 1 1 X^2+X 1 1 1 1
0 1 0 0 X^2 X^2+1 1 1 X 1 X^2+X+3 X^2+X+2
0 0 1 0 X^2+1 1 X X^2+X+1 1 X^2+X X+3 X
0 0 0 1 1 X X+1 X^2+X+1 0 X^2 X+3 X^2+1
0 0 0 0 2 0 2 0 2 0 2 0
generates a code of length 12 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 8.
Homogenous weight enumerator: w(x)=1x^0+334x^8+2688x^9+9272x^10+31712x^11+42784x^12+32224x^13+9184x^14+2464x^15+369x^16+32x^17+8x^18
The gray image is a code over GF(2) with n=96, k=17 and d=32.
This code was found by Heurico 1.16 in 13 seconds.